Сифилис - Лечение кожи

Нутригеномика: питание vs. заболевания

Нутригеномика: от пищи к генам

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт — РНК или белок. Экспрессия генов регулируется на разных стадиях, но главный «контрольный пункт» — это начало транскрипции (синтеза РНК на матрице ДНК).

Инициация транскрипции зависит как от наличия необходимых белков (транскрипционные факторы, ферменты и пр.), так и от доступности (сродства) ДНК для этих белков (т.е. от эпигенетических модификаций). Компоненты пищи способны влиять на оба процесса [6], [7].

https://www.youtube.com/watch?v=ytpolicyandsafetyru

Все клетки нашего организма — от нейронов до лейкоцитов — несут одинаковый генетический материал. Но в каждой клетке экспрессируется специфический набор генов — это определяет специализацию клеток.

Включение/выключение генов регулируется эпигенетическими модификациями (такие модификации не затрагивают последовательность ДНК, но меняют ее «обвеску»). В клетке ДНК компактизирована, т.е.

намотана на «бусины» — комплекс белков гистонов, различные химические модификации которых включают или выключают ген. Помимо этого, выключение генов происходит при модификации непосредственно молекулы ДНК (метилирование).

Некоторые компоненты пищи влияют на эти процессы (рис. 2):

  1. Ацетилирование гистонов (включение гена). Сульфарафан (содержащийся в капусте, брокколи, цветной капусте) и диаллилдисульфид (из чеснока) — включают гены, подавляя ферменты, которые репрессируют ген посредством снятия ацетильной метки с гистонов. Поэтому сульфарафан способен включать молчащие в раковых клетках гены — регулировщики нормального деления, что подавляет рост опухоли. Масляная кислота, которая образуется микрофлорой человека при употреблении клетчатки, оказывает аналогичное влияние на работу генов, а также активирует иммунную систему, что подавляет рост раковых клеток. Ингибирующее действие масляной кислоты на метастазирование было показано у крыс на модели рака прямой кишки [8].
  2. Метилирование ДНК (выключение гена). Источники метильных групп (холин, метионин, фолиевая кислота) содержатся в яйцах, шпинате, бобовых и печени. У взрослых крыс хронический дефицит метильных групп влечет за собой спонтанное образование опухолей [9], а также ведет к активации мобильных элементов генома [10]. Широко известен эксперимент, проведенный Джиртлом и Уотерлэндом, с трансгенными грызунами агути (Avy agouti), которые имеют желтую окраску и предрасположенность к ожирению, диабету и раку. При добавлении в корм беременным самкам агути холина, метионина и фолиевой кислоты у них рождалось нормальное потомство с коричневой окраской шерсти и без отклонений в здоровье [11]. Дело в том, что присутствие источников метильных групп в пище матери способствовало метилированию (и, соответственно, выключению) гена agouti, вызывавшего болезненный фенотип у эмбрионов .
  3. Для нормального развития плода и протекания беременности у женщин необходимы источники метильных групп, в частности, фолиевая кислота. При ее дефиците повышается риск преждевременных родов, выкидышей, а также возможны патологии в нервной системе плода и низкий вес новорожденного [14]. Точные механизмы действия фолиевой кислоты до сих пор не ясны, известно лишь, что усиливается метилирование гена IGF2 (инсулиноподобного фактора роста 2), участвующего в росте и развитии плода [15].

Нутригенетика: от генов к пище

Нутригенетика изучает, как вариации в генах отражаются на усвоении и метаболизме пищи и, соответственно, выявляет генетические предрасположенности к заболеваниям. Генетические заболевания подразделяют на моногенные (определяются вариацией в одном гене) и полигенные (определяются комбинацией генов факторами внешней среды) [36].

К моногенным заболеваниям относят, например, фенилкетонурию, глютеновую болезнь, непереносимость лактозы. Причина таких заболеваний ясна, поэтому внешние проявления предотвратить просто: достаточно исключить из рациона неусваиваемый компонент пищи.

Для профилактики полигенных заболеваний — ожирения, диабета II типа, рака, нарушений сердечно-сосудистой системы — необходимо контролировать не только рацион, но и следить за степенью физической активности, уровнем стресса и пр.

ПОДРОБНЕЕ ПРО:  Сердечная недостаточность. Анамнез при сердечной недостаточности

Нутригеномика: питание vs. заболевания

Тем не менее, накапливающиеся знания из нутригенетики и нутригеномики позволяют индивидуально (в зависимости от генотипа) выявить группы риска и определить, каких продуктов данному человеку стоит избегать, а какими, наоборот, дополнить свое ежедневное меню, чтобы минимизировать риски заболеваний.

Сердечно-сосудистые заболевания (CCЗ). Развитие ССЗ чрезвычайно комплексно, поэтому ученые еще далеки от установления всех факторов рисков и способов их устранения. Однако в генах липидного обмена (генах аполипопротеинов E, A1, A2, A54; PPARs;

липоксигеназы-5 и др.) выявлены вариации, у обладателей которых быстрее развивается ССЗ от высококалорийного питания [35]. Также показано, что у людей с медленным метаболизмом кофеина повышается риск сердечных атак при его употреблении [36].

При этом доказан основной риск развития ССЗ — наличие метаболического синдрома, который характеризуется «смертельной четверкой»: повышением артериального давления, уровня сахара и липидов в крови, ожирением.

Рак. Особенности транспорта и метаболизма питательных веществ вносят вклад в развитие (или предотвращение) раковых заболеваний. Например, распространена мутация, снижающая эффективность фермента, необходимого для метилирования ДНК.

При недостатке в пище источников метильных групп (фолата и холина), носители такой мутации имеют повышенную вероятность заболеть колоректальным раком. Для таких людей употребление алкоголя — это дополнительный усугубляющий фактор, так как алкоголь снижает абсорбцию фолата и увеличивает его выведение из организма [34].

Употребление красного мяса значительно увеличивает риск развития колоректального рака как у обладателей быстрой N-ацетилтрансферазы, так и у носителей особой комбинации полиморфизмов в гене цитохрома P450[33], [36].

Обнаружено также, что вероятность онкологических заболеваний возрастает при мутации в гене одного из типов глутатионтрансфераз (ферментов, участвующих в детоксикации), и постоянное поступление в организм токсинов (при курении и др.

) опасно для людей с подобной мутацией. А поедание капусты и прочих крестоцветных, наоборот, будет крайне полезно, так как они содержат вещества, увеличивающие активность глутатионтрансфераз [34].

Ожирение. Определенный вариант гена FTO (fat mass- and obesity-associated gene) ассоциирован у людей с ожирением и диабетом. Во время проведения исследований выяснилось, что при неограниченном доступе к еде дети с таким вариантом FTO склонны потреблять более калорийную пищу.

Несмотря на возможные генетические предрасположенности к ожирению, диабету, сердечно-сосудистым заболеваниям и раку, показано, что факторы окружающей среды играют существенную роль при развитии вышеперечисленных патологий [7].

ПОДРОБНЕЕ ПРО:  Пройди тест и определи свой биологический возраст

Нутригеномика: питание vs. заболевания

Поэтому ВОЗ были составлены базовые рекомендации для поддержания здоровья: употребление разнообразных фруктов и овощей в течении дня, снижение потребления насыщенных и транс-жиров, копченостей, соленой пищи;

умеренное употребление алкоголя; активный образ жизни; поддержание нормального веса. Различные исследования подтвердили обратную зависимость между употреблением овощей и фруктов и частотой онкологических заболеваний [37], [38].

Кроме того, накапливающиеся данные о благотворном влиянии на здоровье и долголетие рациона с низким содержанием животных белков уже сегодня заставляют диетологов выстраивать новую систему сбалансированного питания.

Однако для полноценного представления о механизмах влияния составляющих пищи (а также их комбинаций) на организм, и возможных разбросах такого влияния среди человеческой популяции предстоит еще сделать много работы.

Проблемы

Отдельно взятый прием пищи оказывает слабое влияние на организм, поэтому при проведении нутригеномных исследований очень важна длительность употребления нутриентов, что усложняет проведение экспериментов.

Для анализа изменений в экспрессии генов и метаболизма клетки используются следующие методы: эпигенетический анализ и анализ клеточных мРНК (транскриптома), белков (протеома) и метаболитов (метаболома) (рис. 5).

К сожалению, на сегодняшний день методы получения протеома и метаболома дороги и развиты недостаточно, а количество мРНК не всегда пропорционально количеству белка в клетке и не дает информации об активности белка.

Кроме того, для исследований требуется достаточно большое количество биологического материала, поэтому анализируется, в основном, кровь, в частности, белые кровяные клетки (жировая и мышечная ткани — на втором месте), но до сих пор неизвестно, насколько точно они отражают ранние нарушения в метаболизме [39].

Нутригеномные методы исследования

Рисунок 5. Нутригеномные методы исследования.

[6], рисунок адаптирован.

Несмотря на то, что пока не накоплено достаточного объема достоверной информации для внедрения нутригеномики и нутригенетики в повседневную жизнь, уже существуют компании, предлагающие нутригенетические тесты (правительство США выпустило отчет об опасности и недостоверности таких тестов).

Перспективы

Нутригеномика: питание vs. заболевания

Ожидается, что вклад нутригеномики и нутригенетики в здравоохранение в следующем десятилетии будет очень значительным. Установление молекулярных механизмов взаимодействия «пища—гены» и выявление ранних маркеров нарушений в метаболизме позволит проводить эффективное превентивное лечение.

https://www.youtube.com/watch?v=ytpressru

ПОДРОБНЕЕ ПРО:  Физические упражнения сделают вас моложе на клеточном уровне – Правильное питание и ЗОЖ

Планируется составлять индивидуальный план питания на основе особенностей метаболизма и генетических предрасположенностей (рис. 6). Продукты питания будут проверяться не только на безопасность, но и на эффективность их действия на организм.

Adblock
detector